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ABSTRACT

Nowadays, sinusoidal modeling commonly includes a residual ob-
tained by the subtraction of the sinusoidal model from the origi-
nal sound. This residual signal is often further modeled as filtered
white noise. In this work, we evaluate how well filtered white noise
models the residual from sinusoidal modeling of musical instru-
ment sounds for several sinusoidal algorithms. We compare how
well each sinusoidal model captures the oscillatory behavior of the
partials by looking into how “noisy” their residuals are. We per-
formed a listening test to evaluate the perceptual similarity between
the original residual and the modeled counterpart. Then we further
investigate whether the result of the listening test can be explained
by the fine structure of the residual magnitude spectrum. The re-
sults presented here have the potential to subsidize improvements
on residual modeling.

Index Terms— Sinusoidal Analysis, Residual Modeling, Lin-
ear Prediction, Inverse Filter, Spectral Whitening.

1. INTRODUCTION

sinusoidal modeling stands out among the models used to repre-
sent [1, 2, 3, 4] and transform musical instrument sounds [5, 6, 7]
due to the fidelity and flexibility of the representation. In essence,
sinusoidal analysis models each partial with a time-varying sinu-
soid, capturing temporal variations in amplitude, frequency and
phase (the parameters of the model). sinusoidal modeling represents
musical instrument sounds well because most musical instruments
are designed to present very clear modes of vibration. However,
there is noise present in virtually all musical instrument sounds,
such as breathing noise in woodwinds or mechanical noise like the
hammer striking the piano strings.

There have been improvements in sinusoidal modeling to ad-
dress issues such as partial tracking [2, 3, 4], transient modeling
[8, 7], to augment the accuracy of parameter estimation as well as
the temporal resolution by adapting partials trajectories inside the
analysis window [9, 10]. Nevertheless, the lack of noise is percep-
tually noticeable in the sinusoidal representation of musical instru-
ment sounds [11, 12]. Serra [13] proposed to subtract the sinusoidal
component (i.e., the result of sinusoidal analysis) from the origi-
nal recording to estimate a “residual component”. This residual is,
by definition, whatever is left from sinusoidal modeling, and there-
fore, commonly assumed to be noise not captured by the sinusoidal
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model (usually because sinusoids are not a compact representation
of noise). Considerably less effort has been made in residual mod-
eling. It has become standard practice [13, 11, 12] to model the
residual component by filtering white noise with a time-varying fil-
ter that emulates the spectral characteristics of the residual signal.
Naturally, there are different ways to model the spectral distribution
of energy of the residual component. The basic assumption is that
the residual signal does not contain perceptually relevant informa-
tion in the phase spectrum, only in magnitude. Therefore, “psychoa-
coustic” filter banks are usually found in residual modeling [7, 11].
Goodwin [11] uses the short-time energy in equivalent rectangular
bands (ERBs) of the magnitude spectrum for both the analysis and
synthesis stage, and justifies stating that the ear is insensitive to en-
ergy distributions within each ERB. Levine [7] uses Bark bands in-
stead. Resynthesis commonly uses a piece-wise constant spectrum
with magnitudes from the ERB (or Bark bands) energy and ran-
dom phase. Goodwin remarks that temporal phase correlations can
control the texture of the modeled residual, which has been stud-
ied further to synthesize environmental sounds (e.g., running water
or crackling fire)[14]. Ding [12] proposes to use multi-pulse exci-
tation linear prediction (MPLP) to keep phase coherence with the
sinusoidal component.

There have been no formal investigations on the filtered white
noise model for residual from sinusoidal modeling of musical in-
strument sounds. In this work we present a systematic evaluation
of how well filtered white noise models the residual from sinu-
soidal modeling of musical instrument sounds for different sinu-
soidal modeling algorithms. Each algorithm captures oscillatory
behavior differently and, consequently, leaves (perceptually) differ-
ent residuals. We performed a subjective listening test to evaluate
the perceptual similarity between filtered white noise and the resid-
ual of each sinusoidal algorithm. Then we use an objective measure
of similarity to compare with the perceptual assessments. The next
section briefly reviews the sinusoidal modeling algorithms used in
this investigation. Next, we describe the framework used to de-
compose the musical instrument sounds into the blocks used in the
evaluation, which is followed by a discussion and the conclusions
and future perspectives.

2. SINUSOIDAL MODELING

Conceptually, traditional sinusoidal modeling supposes that the mu-
sical instrument sounds being modeled can be decomposed into
quasi-harmonic oscillations and additive noise. In practice, the mu-
sical instrument sound y (t) is separated into a sinusoidal compo-
nent ys (t) plus a residual component yr (t), where yr (t) is ob-
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tained by subtraction of the purely sinusoidal component ys (t)
from the original sound y (t). The sinusoidal component is further
represented as

ys (t) =

[
K∑
k=0

αke
j2πtfk

]
w (t) (1)

where αk and φk (t) = 2πtfk are respectively the amplitude
and phase of the kth sinusoid inside the analysis window w (t), and
K is the number of sinusoids. The model assumes that the sinusoids
describe stable partials of the sound so their parameters do not vary
significantly inside the analysis window. Traditionally [13], the pa-
rameters of the model αk and φk (t) are estimated for each frame
of the short-time Fourier transform, limiting the temporal resolu-
tion of the model to that of the STFT. In this article, SM stands for
a sinusoidal model that imposes no restrictions on the frequencies
of the partials [13]. For most musical instrument sounds, a model
where the sinusoids are harmonically related is a good approxima-
tion, giving rise to the harmonic model (HM) [15], which uses si-
nusoids whose frequencies are multiple integers k of a fundamental
frequency f0 as φk (t) = 2πtkf0.

There have been proposals to improve the temporal resolution
of the sinusoidal model by adapting the estimation of the parameters
of the sinusoids inside the analysis window, resulting in adaptive si-
nusoidal models. In particular, the adaptive harmonic model (aHM)
[9] used in this work modulates the frequency of each sinusoid in-
side the analysis window upon resynthesis. Recently, the extended
adaptive quasi-harmonic model (eaQHM) was developed [10]. The
eaQHM algorithm adapts both the amplitudes and frequencies of
the sinusoidal partials inside the analysis window, therefore it can
be considered a full AM/FM model, as shown below

ys(t) =

[
K∑
k=0

αk (t) ejφk(t)

]
w (t) , (2)

where αk(t) denotes the time-varying amplitude and φk(t) denotes
the instantaneous phase function of the kth component inside the
analysis window w (t). Table 1 summarizes the temporal represen-
tation of frequencies for the analysis and synthesis stages for the
sinusoidal algorithms used.

2.1. Residual Modeling

The residual component yr (t) is modeled as

ŷr (t) =

∫ t

0

a (t− τ)u (τ) dτ (3)

where ŷr (t) is the modeled residual component, u (τ) is white
noise and a (t, τ) is the response of a time-varying filter. Serra [13]
wrote that “a stochastic, or noise, signal is fully described by its

Table 1: Comparison of representations of frequency components
for the analysis and synthesis stages of the sinusoidal algorithms
used.

Analysis Synthesis
SM stationary stationary (OLA)
HM stationary Splines
aHM adaptive Splines

eaQHM adaptive Splines
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Figure 1: Illustration of the signal decomposition.

power spectral density which gives the expected signal power versus
frequency. When a signal is assumed stochastic, it is not necessary
to preserve either the instantaneous phase or the exact magnitude
details of individual FFT frames,” justifying the assumption that the
residual component can be modeled as filtered white noise. There
have been different proposals to estimate the filter a (τ) [13, 11, 12].
In this work, we estimate the spectral envelope of each frame of
the STFT of the residual component yr (t) using linear prediction
(LPC) [16] and use it as the time-varying filter coefficients, as has
been previously proposed for speech [15]. LPC is adequate for
spectral envelope estimation of yr (t) because it tends to follow
the average energy of noisy spectra rather than the peaks. Using
eq. (3) the model suposes that if we inverse filter yr (t), we should
obtain white noise (a signal with flat magnitude and no temporal
phase coherence or random phase). In this work, we investigate if
filtered white noise is perceptually close to the original residual sig-
nals with a listening test and further investigate if the inverse filtered
residual component presents the characteristics of white noise with
an objective measure based on the autocorrelation function.

3. EXPERIMENTAL FRAMEWORK

Figure 1 illustrates the steps of the experimental framework. Each
musical instrument sound y (t) is decomposed into sinusoidal ys (t)
and residual yr (t) using SM, HM, aHM, and eaQHM. Each compo-
nent, ys (t) and yr (t), is modeled with linear prediction, resulting
in a time-varying spectral envelope As (z) and As (z) and an in-
verse filtered (whitened) signal ȳs (t) and ȳr (t), which are the pre-
diction errors [16]. In the listening test, we use white noise filtered
withAr (z). The objective similarity measure compares ȳr (t) with
ȳs (t) and u (t).

Table 2: Musical instrument sounds used in the listening test.

Strings Brass Woodwinds
Double Bass Bass Trombone Bass Clarinet

Cello Bass Trumpet Bassoon
Viola Cimbasso Clarinet Bb

Contrabass Tuba English Horn
Tenor Trombone

Tuba
Wagner Tuba
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Table 3: Average Signal to Reconstruction Error Ratio (SRER)
across musical instrument sounds.

SRER (dB)
SM HM aHM eaQHM

33.86 34.84 36.53 50.62

Table 2 lists the 14 musical instruments used. The pitch of all
sounds is C3 ' 131 Hz, the dynamics is forte, and the duration is
under 2s. All sinusoidal algorithms used a window size equivalent
to 3 times the period of the fundamental frequency f0 ' 131 Hz,
50% overlap, and size of the FFT 4 times the window size. The
linear prediction order used was 50 for both ys (t) and yr (t) to
avoid smearing possible oscillatory energy left in yr (t) (missed by
the sinusoidal model).

4. EVALUATION

The evaluation consists of a listening test and an objective measure
based on the autocorrelation function. However, firstly we estimate
the residual energy to compare how well each sinusoidal algorithm
models the musical instrument sounds. The less residual energy, the
better the algorithm captured the oscillatory behavior. The signal to
reconstruction error ratio (SRER) shown in eq. (4) measures the
ratio between the total energy and the energy in the residual com-
ponent yr (t). The higher the ratio, the less residual energy there is
in yr (t).

SRER = 20 log10

RMS [y (t)]

RMS [yr (t)]
(4)

where y (t) is the original signal and yr (t) is the residual compo-
nent. Table 3 shows the average SRER in dB across musical instru-
ment sounds for each method, revealing that eaQHM has a higher
SRER than all other methods by roughly 15 dB.

4.1. Listening Test

The purpose of the listening test is to evaluate the perceptual simi-
larity between the residual signal yr (t) and its filtered-white-noise
counterpart ŷr (t) for the the 14 musical instrument sounds listed in
Table 2 modeled with the four sinusoidal algorithms shown in Table
1. For each participant, the listening test presented a subset of 16
pairs of sounds corresponding to yr (t) and ŷr (t) from 4 musical
instruments (times 4 algorithms) in random order to minimize cross
comparison among methods. All sounds were normalized at−16dB
RMS. The listener is instructed to listen to each pair as many time as
they want and rate their perceptual similarity in a scale from 1 to 5
labeled with the terms 1) Very different, 2) Different, 3) Fairly sim-
ilar, 4) Very similar, 5) Identical. The test can be found at http:
//gillesdegottex.eu/ExCaetano2013simil. Figure 2
shows the result for 51 participants aged between 22 and 67, depict-
ing the mean opinion score (MOS) and 95% confidence interval. In
average, eaQHM results in a residual signal that was considered
between fairly similar and very similar to its filtered white noise
counterpart. The other 3 algorithms (SM, HM, and aHM) produced
residuals whose filtered white noise counterparts were considered
practically different.

4.2. Objective Measure

The result of the listening test indicates that, in general, filtered
white noise was not considered a perceptually similar representa-

SM HM aHM eaQHM
1

2

3

4

5

S
u
b
je

ct
iv

e 
si

m
il

ar
it

y

Mean Opinion Scores

Very different

Different

Fairly similar

Very similar

Identical

Figure 2: Result of the listening test. The figure shows the mean
opinion score (MOS) and 95 % confidence interval for the four si-
nusoidal models tested.

tion of yr (t). However, the listening test gives no further evidence
to help explain why. Ideally, we would like to identify what remains
in the residual signal that departs from the conceptual filtered-white-
noise hypothesis. In the listening test, the perceptual effect of the
LPC spectral envelope of yr (t) is present in ŷr (t). Thus we assume
that the differences lie elsewhere, in the spectral fine structure or in
the phase spectrum. To evaluate the importance of the fine structure
between yr (t) and ŷr (t), we compare the whitened residual com-
ponent ȳr (t) with the whitened sinusoidal component ȳs (t) and
with the model (i.e., white noise u (t)) with an objective similarity
measure. We use the autocorrelation functions, shown in (5), which
should provide a unique representation of both the white noise (zero
except at zero lag) and the sinusoidal component (peaks at multiple
integers of the fundamental frequency).

R (i) =

N−1−i∑
n=0

y (n) y (n− i) (5)

The similarity measure is then the dot product between the au-
tocorrelation functions, given by cos (Θ {ȳr, u}) = Rȳr (i)·Ru (i)
and cos (Θ {ȳr, ȳs}) = Rȳr (i) · Rȳs (i). The dot (or inner) prod-
uct can be interpreted as the projection of Rȳr (i) onto Rȳs (i) and
Ru (i). Thus Θ is the angle between the autocorrelation functions
interpreted as vectors, and it varies from 0 (identical) to 90◦ (or-
thogonal). Table 4 shows the average of these values across all mu-
sical instruments to allow comparison per method. Following Fig.
(2), we expected eaQHM to give a significantly smaller Θ {ȳr, u}
and larger Θ {ȳr, ȳs}.

5. DISCUSSION

We notice that each sinusoidal modeling algorithm resulted in a dif-
ferent perceptual similarity, revealing that different algorithms leave
different undesired information in the residual signal yr . Therefore

Table 4: Average angle in degrees across musical instrument sounds
for each algorithm.

SM HM aHM eaQHM
Θ {ȳr, u} 46.11◦ 51.63◦ 49.83◦ 50.95◦

Θ {ȳr, ȳs} 61.46◦ 67.25◦ 68.85◦ 67.48◦
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we suspect that there might be some oscillatory behavior left in yr .
In other words, some sinusoidal modeling algorithms fail to capture
all oscillatory energy such as frequency modulations or transients.
The models that use slowly varying sinusoids (stable oscillations)
plus additive noise might oversimplify the complexity of musical
sounds. It has already been remarked [7] that sinusoids plus noise
plus transients might be a more realistic representation for musi-
cal instrument sounds. However, transients are characteristically
present mostly during the attack, but there is no indication that the
participants used the attack as perceptual cue. The listening test
shows that the AM/FM modeling of eaQHM captures most oscilla-
tory energy, including transients.

On the other hand, Table 4 reveals no significant difference
across algorithms. The angles Θ do indicate that ȳr is closer to
u (white noise) than to ȳs (sinusoidal) for all algorithms. But the
similarities measured by Θ do no explain the results of the listening
test. Our interpretation of this result is that the perceptual differ-
ences found in the listening test cannot be explained by fine spectral
structure, rather, by phase coherence or transients.

Interestingly, one of the participants of the listening test re-
marked that, for each pair, one of them always sounded brighter.
Indeed, ŷr has more energy in high frequencies because pure white
noise has a flat spectrum where energy is not equal per octave (let
alone per ERB or Bark band). A possible course of investigation
would be to use different types of noise (prior to applying the time-
varying spectral envelope) to correctly balance the spectral energy,
such as pink noise.

6. CONCLUSIONS AND FUTURE PERSPECTIVES

We presented a systematic investigation of the filtered white noise
model for the residual from sinusoidal modeling of musical instru-
ment sounds. Four different sinusoidal modeling algorithms were
evaluated. We conducted a listening test and we developed an ob-
jective measure of spectral similarity. The listening test assessed the
perceptual similarity between filtered white noise and the residual
component for each sinusoidal algorithm. The results indicate that,
in general, filtered white noise was considered different from the
residual component. However, we determined that eaQHM leaves a
residual that is fairly similar to the filtered white noise counterpart.
The objective measure compared the residual with both the sinu-
soidal component and their modeled counterpart across algorithms
using the autocorrelation functions. The objective evaluation aimed
to investigate the reason for the result of the listening test, trying
to indicate whether there was “sinusoidal” energy left in the poorly
modeled residuals, for example. The objective similarity measure
did not indicate that the perceptual differences found can be ex-
plained by comparing spectral fine structure. However, the autocor-
relation function only includes information from the power spectral
density. Thus we suspect that the differences lie in the phase spec-
trum (possibly due to temporal phase coherence) or transients in the
residual, confirming the conclusion of previous studies [11, 7].

Future work should focus on determining the reason for the dif-
ference between the conceptual model of filtered white noise and
what current sinusoidal modeling algorithms fail to model. Perspec-
tives include using “colored” noise to correct the high-frequency
energy content perceived as brightness (or some other more sophis-
ticated psychoacoustic model). Further investigation on the tem-
poral phase coherence should develop a measure for analysis and
comparison with the sinusoidal component. Attack transients might
account for some of the perceptual difference we found for most

sinusoidal algorithms.
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